Solutions

1.1	Top view: Triangle MBC: $\|\mathrm{CM}\|=195 \mathrm{~km}, \angle \mathrm{BCM}=230^{\circ}-180^{\circ}=50^{\circ}$, and $\angle \mathrm{MBC}=75^{\circ}$, so $\angle \mathrm{CMB}=180^{\circ}-75^{\circ}-50^{\circ}=55^{\circ}$. Then $\|\mathrm{CB}\|=\frac{\|\mathrm{CM}\| \sin (\angle \mathrm{CMB})}{\sin (\angle \mathrm{MBC})}=165.4 \mathrm{~km}$. Triangle $\mathrm{DBC}:\|\mathrm{BC}\|=165.4 \mathrm{~km}, \angle \mathrm{BCD}=215^{\circ}-180^{\circ}=35^{\circ}$, and $\angle \mathrm{DBC}=75^{\circ}$, so $\angle \mathrm{CDB}=180^{\circ}-75^{\circ}-35^{\circ}=70^{\circ}$. Then $\|\mathrm{CD}\|=\frac{\|\mathrm{BC}\| \sin (\angle \mathrm{DBC})}{\sin (\angle \mathrm{CDB})}=170.0 \mathrm{~km}$. Triangle EBC: $\|\mathrm{BC}\|=165.4 \mathrm{~km}, \angle \mathrm{BCE}=221^{\circ}-180^{\circ}=41^{\circ}$, and $\angle \mathrm{EBC}=75^{\circ}$, so $\angle \mathrm{CEB}=180^{\circ}-75^{\circ}-41^{\circ}=64^{\circ}$. Then $\|C E\|=\frac{\|B C\| \sin (\angle E B C)}{\sin (\angle C E B)}=177.7 \mathrm{~km}$. Triangle EDC: $\angle \mathrm{DCE}=41^{\circ}-35^{\circ}=6^{\circ}$. Horizontal distance traveled by Maribo: $\|\mathrm{DE}\|=\frac{\|\mathrm{DC}\| \sin (\angle \mathrm{DCE})}{\sin (\angle \mathrm{CED})}=19.77 \mathrm{~km}$ Side view: Triangle CDF: $\|\mathrm{DF}\|=\|\mathrm{DC}\| \tan (\angle \mathrm{FCD})=59.20 \mathrm{~km}$ Triangle CEG: $\|\mathrm{EG}\|=\|\mathrm{CE}\| \tan (\angle \mathrm{GCE})=46.62 \mathrm{~km}$ Thus vertical distance travelled by Maribo: $\|\mathrm{DF}\|-\|\mathrm{EG}\|=12.57 \mathrm{~km}$. Total distance travelled by Maribo from frame 155 to 161: $\|\mathrm{FG}\|=\sqrt{\|\mathrm{DE}\|^{2}+(\|\mathrm{DF}\|-\|\mathrm{EG}\|)^{2}}=23.43 \mathrm{~km}$. The speed of Maribo is $v=\frac{23.43 \mathrm{~km}}{2.28 \mathrm{~s}-1.46 \mathrm{~s}}=28.6 \mathrm{~km} / \mathrm{s}$

1.2 a	Newton's second law: $m_{\mathrm{M}} \frac{\mathrm{d} v}{\mathrm{~d} t}=-k \rho_{\mathrm{atm}} \pi R_{\mathrm{M}}^{2} v^{2}$ yields $\frac{1}{v^{2}} \mathrm{~d} v=-\frac{k \rho_{\mathrm{atm} \pi} R_{\mathrm{M}}^{2}}{m_{\mathrm{M}}} \mathrm{d} t$. By integration $t=\frac{m_{\mathrm{M}}}{k \rho_{\text {atm }} \pi R_{\mathrm{M}}^{2}}\left(\frac{1}{0.9}-1\right) \frac{1}{v_{\mathrm{M}}}=0.88 \mathrm{~s}$. Alternative solution: The average force on the meteoroid when the speed decreases from v_{M} to $0.9 v_{\mathrm{M}}$ can be estimated to $F_{\mathrm{av}}=-k \rho_{\mathrm{atm}} \pi R_{\mathrm{M}}^{2}\left(0.95 v_{\mathrm{M}}\right)^{2}$. Using that the acceleration is approximately constant, $a_{\mathrm{av}}=-k \rho_{\mathrm{atm}} \pi R_{\mathrm{M}}^{2}\left(0.95 v_{\mathrm{M}}\right)^{2} / m_{\mathrm{M}}$, results in $t=\frac{-0.1 v_{\mathrm{M}}}{a_{\mathrm{av}}}=0.87 \mathrm{~s}$.

$1.2 \mathrm{~b} \left\lvert\, \frac{E_{\mathrm{kin}}}{E_{\text {melt }}}=\frac{\frac{1}{2} v_{\mathrm{M}}^{2}}{c_{\mathrm{sm}}\left(T_{\mathrm{sm}}-T_{0}\right)+L_{\mathrm{sm}}}=\frac{4.2 \times 10^{8}}{2.1 \times 10^{6}}=2.1 \times 10^{2} \gg 1\right.$.

	$[x]=[t]^{\alpha}\left[\rho_{\mathrm{sm}}\right]^{\beta}\left[c_{\mathrm{sm}}\right]^{\gamma}\left[k_{\mathrm{sm}}\right]^{\delta}=[\mathrm{s}]^{\alpha}\left[\mathrm{kg} \mathrm{m}^{-3}\right]^{\beta}\left[\mathrm{m}^{2} \mathrm{~s}^{-2} \mathrm{~K}^{-1}\right]^{\gamma}\left[\mathrm{kg} \mathrm{m} \mathrm{s}^{-3} \mathrm{~K}^{-1}\right]^{\delta}$, so $[\mathrm{m}]=[\mathrm{kg}]^{\beta+\delta}[\mathrm{m}]^{-3 \beta+2 \gamma+\delta}[\mathrm{s}]^{\alpha-2 \gamma-3 \delta}[\mathrm{~K}]^{-\gamma-\delta}$. Thus $\beta+\delta=0,-3 \beta+2 \gamma+\delta=1, \alpha-2 \gamma-3 \delta=0$, and $-\gamma-\delta=0$.	
From which $(\alpha, \beta, \gamma, \delta)=\left(+\frac{1}{2},-\frac{1}{2},-\frac{1}{2},+\frac{1}{2}\right)$ and $x(t) \approx \sqrt{\frac{k_{\mathrm{sm}} t}{\rho_{\mathrm{sm}} c_{\mathrm{sm}}} .}$	0.6	
1.3 b	$x(5 \mathrm{~s})=1.6 \mathrm{~mm} \quad x / R_{\mathrm{M}}=1.6 \mathrm{~mm} / 130 \mathrm{~mm}=0.012$.	0.4

1.4 a	Rb-Sr decay scheme: ${ }_{37}^{87} \mathrm{Rb} \rightarrow{ }_{38}^{87} \mathrm{Sr}+{ }_{-1}^{0} \mathrm{e}+\bar{v}_{\mathrm{e}}$	0.3
1.4b	$N_{87 \mathrm{Rb}}(t)=N_{87 \mathrm{Rb}}(0) \mathrm{e}^{-\lambda t}$ and $\mathrm{Rb} \rightarrow \mathrm{Sr}: N_{87 \mathrm{Sr}}(t)=N_{87 \mathrm{Sr}}(0)+\left[N_{87 \mathrm{Rb}}(0)-N_{87 \mathrm{Rb}}(t)\right]$. Thus $N_{87 \mathrm{Sr}}(t)=N_{87 \mathrm{Sr}}(0)+\left(\mathrm{e}^{\lambda t}-1\right) N_{87 \mathrm{Rb}}(t)$, and dividing by $N_{86 \mathrm{Sr}}$ we obtain the equation of a straight line: $\frac{N_{87 \mathrm{Sr}}(t)}{N_{86 \mathrm{Sr}}}=\frac{N_{87 \mathrm{Sr}}(0)}{N_{86 \mathrm{Sr}}}+\left(\mathrm{e}^{\lambda t}-1\right) \frac{N_{87 \mathrm{Rb}}(t)}{N_{86 \mathrm{Sr}}} .$	0.7
1.4c	Slope: $\mathrm{e}^{\lambda t}-1=a=\frac{0.712-0.700}{0.25}=0.050$ and $T_{1 / 2}=\frac{\ln (2)}{\lambda}=4.9 \times 10^{10}$ year. So $\tau_{\mathrm{M}}=\ln (1+a) \frac{1}{\lambda}=\frac{\ln (1+a)}{\ln (2)} T_{1 / 2}=3.4 \times 10^{9}$ year.	0.4

1.5	Kepler's 3rd law on comet Encke and Earth, with the orbital semi-major axis of Encke given by $a=\frac{1}{2}\left(a_{\min }+a_{\text {max }}\right)$. Thus $t_{\text {Encke }}=\left(\frac{a}{a_{\mathrm{E}}}\right)^{\frac{3}{2}} t_{\mathrm{E}}=3.30$ year $=1.04 \times 10^{8} \mathrm{~s}$.	0.6

1.6a	For Earth around its rotation axis: Angular velocity $\omega_{\mathrm{E}}=\frac{2 \pi}{24 \mathrm{~h}}=7.27 \times 10^{-5} \mathrm{~s}^{-1}$. Moment of inertia $I_{\mathrm{E}}=0.83 \frac{2}{5} m_{\mathrm{E}} R_{\mathrm{E}}^{2}=8.07 \times 10^{37} \mathrm{~kg} \mathrm{~m}^{2}$. Angular momentum $L_{\mathrm{E}}=I_{\mathrm{E}} \omega_{\mathrm{E}}=5.87 \times 10^{33} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}$. Asteroid: $m_{\text {ast }}=\frac{4 \pi}{3} R_{\text {ast }}^{3} \rho_{\text {ast }}=1.57 \times 10^{15} \mathrm{~kg}$ and angular momentum $L_{\text {ast }}=m_{\text {ast }} v_{\text {ast }} R_{\mathrm{E}}=2.51 \times 10^{26} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}$. $L_{\text {ast }}$ is perpendicular to L_{E}, so by conservation angular momentum: $\tan (\Delta \theta)=L_{\text {ast }} / L_{\mathrm{E}}=4.27 \times 10^{-8}$. The axis tilt $\Delta \theta=4.27 \times 10^{-8} \mathrm{rad}$ (so the North Pole moves $R_{\mathrm{E}} \Delta \theta=0.27 \mathrm{~m}$).	0.7
1.6b	At vertical impact $\Delta L_{\mathrm{E}}=0$ so $\Delta\left(I_{\mathrm{E}} \omega_{\mathrm{E}}\right)=0$. Thus $\Delta \omega_{\mathrm{E}}=-\omega_{\mathrm{E}}\left(\Delta I_{\mathrm{E}}\right) / I_{\mathrm{E}}$, and since $\Delta I_{\mathrm{E}} / I_{\mathrm{E}}=m_{\mathrm{ast}} R_{\mathrm{E}}^{2} / I_{\mathrm{E}}=7.9 \times 10^{-10}$ we obtain $\Delta \omega_{\mathrm{E}}=-5.76 \times 10^{-14} \mathrm{~s}^{-1}$. The change in rotation period is $\Delta T_{\mathrm{E}}=2 \pi\left(\frac{1}{\omega_{\mathrm{E}}+\Delta \omega_{\mathrm{E}}}-\frac{1}{\omega_{\mathrm{E}}}\right) \approx-2 \pi \frac{\Delta \omega_{\mathrm{E}}}{\omega_{\mathrm{E}}^{2}}=6.84 \times 10^{-5} \mathrm{~s}$.	0.7
1.6 c	At tangential impact $L_{\text {ast }}$ is parallel to L_{E} so $L_{\mathrm{E}}+L_{\text {ast }}=\left(I_{\mathrm{E}}+\Delta I_{\mathrm{E}}\right)\left(\omega_{\mathrm{E}}+\Delta \omega_{\mathrm{E}}\right)$ and thus $\Delta T_{\mathrm{E}}=2 \pi\left(\frac{1}{\omega_{\mathrm{E}}+\Delta \omega_{\mathrm{E}}}-\frac{1}{\omega_{\mathrm{E}}}\right)=2 \pi\left(\frac{I_{\mathrm{E}}+\Delta I_{\mathrm{E}}}{L_{\mathrm{E}}+L_{\text {ast }}}-\frac{1}{\omega_{\mathrm{E}}}\right)=-3.62 \times 10^{-3} \mathrm{~s}$.	0.7

The Maribo Meteorite

Maximum impact speed $v_{\mathrm{imp}}^{\max }$ arises from three contributions:
(I) The velocity v_{b} of the body at distance a_{E} (Earth orbit radius) from the Sun, $v_{\mathrm{b}}=\sqrt{\frac{2 G m_{S}}{a_{E}}}=42.1 \mathrm{~km} / \mathrm{s}$.
1.7 (II) The orbital velocity of the Earth, $v_{\mathrm{E}}=\frac{2 \pi a_{\mathrm{E}}}{1 \text { year }}=29.8 \mathrm{~km} / \mathrm{s}$.
(III) Gravitational attraction from the Earth and kinetic energy seen from the Earth:
$\frac{1}{2}\left(v_{\mathrm{b}}+v_{\mathrm{E}}\right)^{2}=-\frac{G m_{E}}{R_{E}}+\frac{1}{2}\left(v_{\mathrm{imp}}^{\max }\right)^{2}$.
In conclusion: $v_{\mathrm{imp}}^{\max }=\sqrt{\left(v_{\mathrm{b}}+v_{\mathrm{E}}\right)^{2}+\frac{2 G m_{E}}{R_{E}}}=72.8 \mathrm{~km} / \mathrm{s}$.

Total

