

Newton's second law: $m_{\rm M} \frac{\mathrm{d}v}{\mathrm{d}t} = -k\rho_{\rm atm}\pi R_{\rm M}^2 v^2$ yields $\frac{1}{v^2} \mathrm{d}v = -\frac{k\rho_{\rm atm}\pi R_{\rm M}^2}{m_{\rm M}} \mathrm{d}t$. By integration $t = \frac{m_{\rm M}}{k\rho_{\rm atm}\pi R_{\rm M}^2} \left(\frac{1}{0.9} - 1\right) \frac{1}{v_{\rm M}} = 0.88 \text{ s.}$ 1.2a Alternative solution: The average force on the meteoroid when the speed decreases from $v_{\rm M}$ to 0.9 $v_{\rm M}$ can be estimated to $F_{\rm av} = -k\rho_{\rm atm}\pi R_{\rm M}^2 (0.95 v_{\rm M})^2$. Using that the acceleration is approximately constant, $a_{\rm av} = -k\rho_{\rm atm}\pi R_{\rm M}^2 (0.95 v_{\rm M})^2/m_{\rm M}$, results in $t = \frac{-0.1 v_{\rm M}}{a_{\rm av}} = 0.87 \text{ s.}$

The Maribo Meteorite

$$1.2b \frac{E_{\rm kin}}{E_{\rm melt}} = \frac{\frac{1}{2} v_{\rm M}^2}{c_{\rm sm}(T_{\rm sm} - T_0) + L_{\rm sm}} = \frac{4.2 \times 10^8}{2.1 \times 10^6} = 2.1 \times 10^2 \gg 1.$$

$$0.3$$

$$\begin{bmatrix} x \\ = [t]^{\alpha} [\rho_{\rm sm}]^{\beta} [c_{\rm sm}]^{\gamma} [k_{\rm sm}]^{\delta} = [s]^{\alpha} [kg \, {\rm m}^{-3}]^{\beta} [{\rm m}^{2} \, {\rm s}^{-2} {\rm K}^{-1}]^{\gamma} [kg \, {\rm m} \, {\rm s}^{-3} {\rm K}^{-1}]^{\delta}, \\ \text{so } [m] = [kg]^{\beta+\delta} [m]^{-3\beta+2\gamma+\delta} [s]^{\alpha-2\gamma-3\delta} [{\rm K}]^{-\gamma-\delta}. \\ \text{Thus } \beta+\delta=0, \quad -3\beta+2\gamma+\delta=1, \quad \alpha-2\gamma-3\delta=0, \text{ and } -\gamma-\delta=0. \\ \text{From which } (\alpha,\beta,\gamma,\delta) = \left(+\frac{1}{2},-\frac{1}{2},-\frac{1}{2},+\frac{1}{2}\right) \text{ and } x(t) \approx \sqrt{\frac{k_{\rm sm}t}{\rho_{\rm sm}c_{\rm sm}}}. \\ 1.3b \ x(5 \, {\rm s}) = 1.6 \, {\rm mm} \qquad x/R_{\rm M} = 1.6 \, {\rm mm}/130 \, {\rm mm} = 0.012. \\ 0.4 \end{bmatrix}$$

1.4a	Rb-Sr decay scheme: ${}^{87}_{37}\text{Rb} \rightarrow {}^{87}_{38}\text{Sr} + {}^{0}_{-1}\text{e} + \bar{\nu}_{e}$	0.3
	$\begin{split} N_{87\text{Rb}}(t) &= N_{87\text{Rb}}(0) \mathrm{e}^{-\lambda t} \text{and } \mathrm{Rb} \rightarrow \mathrm{Sr:} \ N_{87\text{Sr}}(t) = N_{87\text{Sr}}(0) + [N_{87\text{Rb}}(0) - N_{87\text{Rb}}(t)]. \\ \mathrm{Thus} \ N_{87\text{Sr}}(t) &= N_{87\text{Sr}}(0) + (\mathrm{e}^{\lambda t} - 1)N_{87\text{Rb}}(t), \text{ and dividing by } N_{86\text{Sr}} \text{ we obtain the} \\ \mathrm{equation of a straight line:} \\ \frac{N_{87\text{Sr}}(t)}{N_{86\text{Sr}}} &= \frac{N_{87\text{Sr}}(0)}{N_{86\text{Sr}}} + (\mathrm{e}^{\lambda t} - 1)\frac{N_{87\text{Rb}}(t)}{N_{86\text{Sr}}}. \end{split}$	0.7
1.4c	Slope: $e^{\lambda t} - 1 = a = \frac{0.712 - 0.700}{0.25} = 0.050$ and $T_{\frac{1}{2}} = \frac{\ln(2)}{\lambda} = 4.9 \times 10^{10}$ year.	0.4
	So $\tau_{\rm M} = \ln(1+a) \frac{1}{\lambda} = \frac{\ln(1+a)}{\ln(2)} T_{\frac{1}{2}} = 3.4 \times 10^9 \text{ year}$.	

1.5 Kepler's 3rd law on comet Encke and Earth, with the orbital semi-major axis of Encke
given by
$$a = \frac{1}{2}(a_{\min} + a_{\max})$$
. Thus $t_{\text{Encke}} = \left(\frac{a}{a_{\text{E}}}\right)^{\frac{3}{2}} t_{\text{E}} = 3.30$ year $= 1.04 \times 10^8$ s.

1.6a	For Earth around its rotation axis: Angular velocity $\omega_{\rm E} = \frac{2\pi}{24 \rm h} = 7.27 \times 10^{-5} \rm s^{-1}$. Moment of inertia $I_{\rm E} = 0.83 \frac{2}{5} m_{\rm E} R_{\rm E}^2 = 8.07 \times 10^{37} \rm kg m^2$. Angular momentum $L_{\rm E} = I_{\rm E} \omega_{\rm E} = 5.87 \times 10^{33} \rm kg m^2 s^{-1}$. Asteroid: $m_{\rm ast} = \frac{4\pi}{3} R_{\rm ast}^3 \rho_{\rm ast} = 1.57 \times 10^{15} \rm kg$ and angular momentum $L_{\rm ast} = m_{\rm ast} v_{\rm ast} R_{\rm E} = 2.51 \times 10^{26} \rm kg m^2 s^{-1}$. $L_{\rm ast}$ is perpendicular to $L_{\rm E}$, so by conservation angular momentum: $\tan(\Delta\theta) = L_{\rm ast}/L_{\rm E} = 4.27 \times 10^{-8}$. The axis tilt $\Delta\theta = 4.27 \times 10^{-8} \rm rad$ (so the North Pole moves $R_{\rm E} \Delta\theta = 0.27 \rm m$).	0.7
1.6b	At vertical impact $\Delta L_{\rm E} = 0$ so $\Delta (I_{\rm E}\omega_{\rm E}) = 0$. Thus $\Delta \omega_{\rm E} = -\omega_{\rm E}(\Delta I_{\rm E})/I_{\rm E}$, and since $\Delta I_{\rm E}/I_{\rm E} = m_{\rm ast}R_{\rm E}^2/I_{\rm E} = 7.9 \times 10^{-10}$ we obtain $\Delta \omega_{\rm E} = -5.76 \times 10^{-14} {\rm s}^{-1}$. The change in rotation period is $\Delta T_{\rm E} = 2\pi \left(\frac{1}{\omega_{\rm E} + \Delta \omega_{\rm E}} - \frac{1}{\omega_{\rm E}}\right) \approx -2\pi \frac{\Delta \omega_{\rm E}}{\omega_{\rm E}^2} = 6.84 \times 10^{-5} {\rm s}.$	0.7
1.6c	At tangential impact L_{ast} is parallel to L_E so $L_E + L_{ast} = (I_E + \Delta I_E)(\omega_E + \Delta \omega_E)$ and thus $\Delta T_E = 2\pi \left(\frac{1}{\omega_E + \Delta \omega_E} - \frac{1}{\omega_E}\right) = 2\pi \left(\frac{I_E + \Delta I_E}{L_E + L_{ast}} - \frac{1}{\omega_E}\right) = -3.62 \times 10^{-3} \text{ s.}$	0.7

Total

9.0